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Demand for nearly every mineral (and energy) commodity is high.
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Who needs mineral resources?

A Every American Born Will Need...
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China used more cement in the last three years
than the U.S. used in the entire 20th century.
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Abstract: The adequacy of mineral resources in light of population growth and rising standards of
living has been a concern since the time of Malthus (1798), but many studies erroneously forecast
impending peak production or exhaustion because they confuse reserves with “all there is”. Reserves
are formally defined as a subset of resources, and even current and potential resources are only a small
subset of “all there is”. Peak production or exhaustion cannot be modeled accurately from reserves.
Using copper as an example, identified resources are twice as large as the amount projected to be
needed through 2050. Estimates of yet-to-be discovered copper resources are up to 40-times more
than currently-identified resources, amounts that could last for many centuries. Thus, forecasts of
imminent peak production due to resource exhaustion in the next 20-30 years are not valid. Short-term
supply problems may arise, however, and supply-chain disruptions are possible at any time due to
natural disasters (earthquakes, tsunamis, hurricanes) or political complications. Needed to resolve
these problems are education and exploration technology development, access to prospective terrain,
better recycling and better accounting of externalities associated with production (pollution, loss of
ecosystem services and water and energy use).



How Are Minerals Important?

Technology is growing more complex...

H He
Li N (e} F Ne
Na B S Cl | Ar
K {Ca]Sc] T V] CrfMn]FeJCo N JCu]zn|Ga|Ge|As | Se | Br | Kr K JCa]Sc| Ti V |CrfMnjFeJCo| Ni JCulZn ] Ga]Gel|]As]|] Se|] Br | Kr
RojsSr] Y | Zr{Nb Mo Tc JRufRh | Pd]JAgjCd]| In | Sn]Sb]|Te Xe Rbop Sty Y | Zr {No Mo Tc JRuJRh JPd]JAg|JCd] In|Sn|Sb]Te | Xe
Cs|BaJlLa]H JTa] W ]Re]Os| Ir Pt JAu | Hg | TI | Pb | Bi | Po ] At | Rn Cs|BaJLa]JH | TaJ W ]Re]Os| I Pt | Au fHg | Tl . Bi ] Po | At | Rn
Fr f|RaJ Ac | Rf [Db JSg |Bh]Hs | Mt ]Ds|Rg] Cp FlI Lv Fr f|Ra|JAc | Rt | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cp FI Lv

Ce| PrINd|Pm|Sm]Eu ] Gd | Tb | Dy JHoJ Er | Tm | Yb | Lu Ce|l PryNd | PmSm|Eu|Gd]|Thb | Dy JHo{ Er | Tm | Yb | Lu

ThpPa|l U NpJPufjAm|Cm]|Bk ]| Cf | Es|Fm|Md]No| Lr ThlPajJ U |NpJPuJAm]Cm| Bk | Cf|Es |Fm|Md]No]| Lr

~30 elements

~75 elements




Renewable Energy

WIND - Neodymium
- Molybdenum
- Iron Ore

SOLAR - Cadmium,
Tellurium, Indium, Germanium,
Gallium Selenium, Silicon, Copper
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Increasing product complexity poses challenges for

recycling.
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Adapted from: Dahmus, J. B.; Gutowski, T. G., What Gets Recycled: An Information Theory Based Model for Product Recycling. Environ. Sci. Technol. 2007, 41, (21), 7543-7550.



Many of the minerals necessary for advanced technologies

are recovered mainly or only as byproducts.

Share of element’s primary production obtained as a byproduct

Lanthanide
series

Actinide
series

Source: Nassar, N.T., Graedel, T.E., and Harper, E.M., 2015, By-product metals are technologically essential but have problematic supply: Science Advances, v. 1, no. 3, p. e1400180.



Production of many mineral commodities is highly

concentrated in a few countries

Share of each element’s global production from various countries
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A critical mineral as defined in a 2008 U.S. National
Academy of Sciences report is one that Is both essential
In use and subject to the risk of supply restriction
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The assessment of Criticality (C) is based on the
geometric mean of three fundamental indicators:

1) Supply risk (R)

2) Production growth (G) ( = BVR -G M

3) Market dynamics (M)
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Criticality (C) indicator values for all commodities
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Demand for dysprosium in air conditioners (A/C) alone

could exceed current mine production by 2050.

Forecasted number of A/C units (in millions) in-use globally

Year 2015 Year 2030

900 1.600

Demand for A/C is
expected to grow
considerably,
especially in Asia. Source: Constantinides, S., 2016, Market outiook for

ferrite, rare earth, and other permanent magnets:
Arnold Magnetic Technologies.

Source: Shah, N., Wei, M., Letschert, V., and Phadke, A., 2015, Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential
Refrigerants in Room Air Conditioning: Lawrence Berkeley National Laboratory.

Forecasted dysprosium (Dy)
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Notes: Calculation of annual A/C unit demand are based on a stocks and flow obsolescence replacement model to achieved noted in-use stocks for years 2015, 2030, and 2050 assuming a Weibull lifespan distribution with a scale parameter of 14.4 and a
shape parameter of 2.4 for the lifespan of the A/C units. Calculation of Dy demand assumed 100-250 grams of NdFeB magnet with 3% Dy content per AC unit and a global penetration rate of PM in A/C increasing linearly from 23% in 2015 to 100% in 2050.



Where will those materials come from?

€ Even though there is little danger of material exhaustion,
there is a very real danger of supply disruption.

€ Critical means you need it, strategic means you don’t have it.

€ Mineral resource discovery is not automatic — it takes time,
money, and training (education) to find new resources

€ Even with exploration success — you can decide whether to
mine something but not where to mine it - mineral deposits
are part of nature



Delay between Discovery and Development

All Commodities : All Countries 1950-2016
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Main Points:

€ As world population and standards of living increase, new
resources are needed

€ Recycling, even if 100% efficient, cannot supply entire need

€ More efficient or innovative manufacturing and technology
can help, but cannot supply entire need

€ “Circular Economy” can help but cannot supply entire need

€ Complete life cycle analysis needs to include upstream
(exploration, discovery, and production) as well as
downstream (manufacturing, recycling, disposal) parts
of the materials cycle — education is critical
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